Sampling function for a single turbine in the mCRM
Source:R/sample_turbine_mCRM.R
sample_turbine_mCRM.Rd
Samples and aggregates appropriate data for a single wind turbine
Usage
sample_turbine_mCRM(
rtn_speed_pars,
bld_pitch_pars,
rtr_radius_pars,
bld_width_pars,
season_specs,
n_iter = 10,
trb_wind_avbl,
trb_downtime_pars
)
Arguments
- rtn_speed_pars
A single row data frame with columns
mean
andsd
, the mean and standard deviation of the rotation speed.- bld_pitch_pars
A single row data frame with columns
mean
andsd
, the mean and standard deviation of the blade pitch angle, i.e. the angle between the blade surface and the rotor plane, in degrees. Assumed to follow a tnorm-lw0 distribution.- rtr_radius_pars
A single row data frame with columns
mean
andsd
, the mean and standard deviation of the radius of the rotor, in metres. Assumed to follow a tnorm-lw0 distribution.- bld_width_pars
A single row data frame with columns
mean
andsd
, the mean and standard deviation of the maximum blade width, in metres. Assumed to be tnorm-lw0 distribution.- season_specs
A data frame defining the seasons for aggregating over collision estimates. It must comprise the following columns:
season_id
, (unique) season identifier,start_month
, name of the season's first month,end_month
, name of the season's last month.
- n_iter
An integer value. The number of samples to generate
- trb_wind_avbl
A data frame with the monthly estimates of operational wind availability. It must contain the columns:
month
, (unique) month names,pctg
, the percentage of time wind conditions allow for turbine operation per month.
- trb_downtime_pars
A data frame with monthly estimates of maintenance downtime, assumed to follow a tnorm-lw0 distribution. It must contain the following columns:
month
, (unique) month names,mean
, numeric, the mean percentage of time in each month when turbines are not operating due to maintenance,sd
, the standard deviation of monthly maintenance downtime.
Examples
season_specs <- data.frame(
season_id = c("PrBMigration", "PoBMigration","OMigration"),
start_month = c("Mar", "May", "Oct"), end_month = c("Apr", "Sep", "Feb")
)
windavb <- data.frame(
month = month.abb,
pctg = runif(12, 85, 98)
)
dwntm <- data.frame(
month = month.abb,
mean = runif(12, 6, 10),
sd = rep(2, 12))
sample_turbine_mCRM(rtn_speed_pars = data.frame(mean = 13.1, sd = 4),
bld_pitch_pars = data.frame(mean = 3, sd = 0.3),
rtr_radius_pars = data.frame(mean = 80, sd = 0),
bld_width_pars = data.frame(mean = 8, sd = 0),
season_specs = season_specs,
n_iter = 10,
trb_wind_avbl = windavb,
trb_downtime_pars = dwntm)
#> RotorRadius BladeWidth RotorSpeed Pitch PrBMigration_DT PrBMigration_OT
#> 1 80 8 11.601249 0.06136483 0.10935238 0.9004818
#> 2 80 8 13.608397 0.05353304 0.08944869 0.9004818
#> 3 80 8 8.887488 0.04858740 0.08270511 0.9004818
#> 4 80 8 8.562781 0.04535419 0.09356532 0.9004818
#> 5 80 8 9.654915 0.05613066 0.07500891 0.9004818
#> 6 80 8 5.849815 0.05870977 0.11590970 0.9004818
#> 7 80 8 21.483483 0.05538532 0.07309718 0.9004818
#> 8 80 8 17.289497 0.06055223 0.11872701 0.9004818
#> 9 80 8 12.881980 0.05536382 0.04533733 0.9004818
#> 10 80 8 19.795382 0.05153243 0.11028632 0.9004818
#> PoBMigration_DT PoBMigration_OT OMigration_DT OMigration_OT
#> 1 0.07932316 0.9079167 0.10018255 0.9257853
#> 2 0.07501109 0.9079167 0.10820380 0.9257853
#> 3 0.05356090 0.9079167 0.06694812 0.9257853
#> 4 0.07868917 0.9079167 0.03845806 0.9257853
#> 5 0.06082757 0.9079167 0.05248013 0.9257853
#> 6 0.08843688 0.9079167 0.08347915 0.9257853
#> 7 0.05997408 0.9079167 0.14004056 0.9257853
#> 8 0.10399099 0.9079167 0.05301178 0.9257853
#> 9 0.05903683 0.9079167 0.06425183 0.9257853
#> 10 0.06600393 0.9079167 0.07014271 0.9257853